Exploiting Pharmacophores
Using Oracle
Objectives

- Develop Pharmacophore Technology
- Use the Best Affordable Pharmacophore Calculations
- Provide Tools for Non-experts
Chem-X Definition of Pharmacophore

- Minimum Characteristics for Activity
- 3 or 4 Interaction Centres
 - H Donor
 - H Acceptor
 - Positive Charge
 - Aromatic Ring
 - Base
 - Acid
 - Lipophile
- Distances Between Centres
Calculating Pharmacophores

- Start with 3D Coordinates
- Locate Rotatable Bonds
 - 3 Points for Single
 - 6 Points for Alpha
 - 2 Points for Conjugated
 - 2 Points for Double
- Perform Rule-based Search
 (Random+Rule for > 10 Bonds)
Chem-X Storage of Pharmacophores

- **Binary as Fingerprint or Bit mask**

<table>
<thead>
<tr>
<th>No of Types</th>
<th>Memory (KB) 3-Centre</th>
<th>Memory (KB) 4-Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>24</td>
<td>6200</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>15100</td>
</tr>
<tr>
<td>6</td>
<td>79</td>
<td>31300</td>
</tr>
<tr>
<td>7</td>
<td>125</td>
<td>58000</td>
</tr>
</tbody>
</table>

- **ASCII as List**
Storage Pros & Cons

- Avoid Repetition of Calculation
- Few Bits Set for Single Molecule Keys
- Reduce Space Used By
 - Compression
 - Reformatting to List
Discovery Architecture

Oracle Host
- Oracle Data
- Property Server
 - Camelot
 - ChemX
 - Properties
 - Toxicity
 - Others...
- Pharmacophores
 - RS3
- Client Host
 - Client Applications

Calculation Host
1. RS3 lists of Structures

2. Property Server creates Chem-X servers

3. Chem-X servers generates conformations and pharmacophores

4. Property Server stores pharmacophores in Oracle

5. Analysis Client

Process Architecture

- Oracle
- RS3: Structures
- Property Server
- Pharmacophore Storage: Calculated Pharmacophores
- Chem-X: Conformations and Pharmacophores
Calculation Standard Approach

- Optimise Starting Coordinates
- Rule Search
 - 3 Points for Single
 - 6 Points for Alpha
 - 2 Points for Conjugated
 - 2 Points for Double
- Energy Cutoff
ORACLE Space & Time

- Typically 60Kb per Structure
- Searching ~5s / Pharmacophore for 62,000 Structures in WDI
- Hardware
 - 400 MHz Pentium II
 - 128Mb
 - 3 Disks (4Gb, 6Gb, 18Gb)
Example 1: NDMA Agonists

- 20 Active Molecules
 Tocris Catalogue of Chemicals for Pharmacology and Neurochemistry

- Arbitrary Selection of 10 plus a “False Positive”

- These 11 Structures Exhibit 6669 Different Pharmacophores
Use of Pharmacophores

- Number of Common Pharmacophores
 - 36 for 9 Molecules
 - 6 for 10 Molecules
 - None All 11 (Including False Positive)

- Searching
 - Find 19 of the 20 Known Actives
 Plus 116 Other Molecules from Tocris
 - 1.6% of WDI in 50 Seconds
Example 2: HIV-1 Protease Inhibitors

- Sample of 16 Actives from 157 Structures
 - Q Han, J Med Chem (1998) 41.12 p2019
 - G V De Lucca, J Med Chem (1999) 42.1 p135

- Common Key of 5 Pharmacophores for 10 or more Structures
Search Results

<table>
<thead>
<tr>
<th>No of Pharm</th>
<th>HIV Hits</th>
<th>% of Known</th>
<th>WDI hits</th>
<th>% WDI</th>
<th>Hit Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>20</td>
<td>12.74%</td>
<td>1</td>
<td>0.00%</td>
<td>1:1</td>
</tr>
<tr>
<td>4</td>
<td>43</td>
<td>27.39%</td>
<td>22</td>
<td>0.04%</td>
<td>2:1</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>57.32%</td>
<td>146</td>
<td>0.23%</td>
<td>3:1</td>
</tr>
<tr>
<td>2</td>
<td>116</td>
<td>73.89%</td>
<td>593</td>
<td>0.95%</td>
<td>6:1</td>
</tr>
<tr>
<td>1</td>
<td>137</td>
<td>87.26%</td>
<td>2949</td>
<td>4.74%</td>
<td>23:1</td>
</tr>
<tr>
<td>Total</td>
<td>157</td>
<td></td>
<td>62150</td>
<td>4.74%</td>
<td>395:1</td>
</tr>
</tbody>
</table>

No of
Pharm
HIV Hits
% of
Known
WDI hits
% WDI
Hit Ratio
Interpretation Using DIVA

Table: HIV-1 Protease Inhibitors

<table>
<thead>
<tr>
<th>C</th>
<th>HIV-1 Protease Structures</th>
<th>D Structure</th>
<th>E ALL 251720</th>
<th>F LLL 202125</th>
<th>G AAR 172117</th>
<th>H ARR 251720</th>
<th>I ARR 251723</th>
<th>J ARR 271723</th>
<th>K DRR 251720</th>
<th>L Ki (nanoMol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>baker_3c</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>baker_3e</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>680</td>
</tr>
<tr>
<td>5</td>
<td>baker_3f</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>6</td>
<td>baker_3n</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1400</td>
</tr>
<tr>
<td>148</td>
<td>salituro_6</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>147</td>
<td>salituro_5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>baker_3s</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>173</td>
</tr>
<tr>
<td>146</td>
<td>salituro_5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3000</td>
</tr>
<tr>
<td>12</td>
<td>baker_3y</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2100</td>
</tr>
<tr>
<td>140</td>
<td>qhan_6e</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3.9</td>
</tr>
<tr>
<td>15</td>
<td>lucca_8</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>23</td>
</tr>
<tr>
<td>138</td>
<td>qhan_5e</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Note: The table displays the inhibition rate for different HIV-1 protease inhibitors using DIVA software.
Colour Coded Ki Plot
Conclusions

- Pharmacophores can be Stored in ORACLE
- Architecture Allows
 - Transparent Calculation of Pharmacophores
 - Integration with Various Analysis Tools
- Fast & Flexible Analysis Enables Selection of Molecules to Test by Non-experts
Acknowledgements

- Richard Postance
- John Woods
- Tony Marchington