MoA Central: A Massively Orthogonal Search Engine for Mechanism of Action & Toxicity Studies

Douglas Selinger, Ph.D.
PreClinical Safety Informatics (PCSi)
ACS 2015, August 19th, 2015
The Future of Drug Discovery

1. Data-driven

“There are known knowns, there are known unknowns, and there are unknown unknowns. Then there are things in databases.”*

2. Mechanism-based

“Nothing in Biology Makes Sense Except in the Light of [insert mechanism here]”**

*I made this up, but it was inspired by Donald Rumsfeld’s “known unknowns” statement (2002).
**Adapted from Theodosius Dobzhansky. The mechanism he was referring to was evolution. (1973)
The challenge

More data should mean better medicines.
The problem

Data dissemination is *massively* inefficient.
The solution

Search
Why a search engine and not a predictive algorithm?

MoA Central is fundamentally a search engine

- **Predictive algorithms**
 - Often black-box
 - p-values are problematic
 - Not clear how to integrate multiple data types
 - The definition of a “target” is ambiguous enough to cause serious problems for predictive algorithms.

- **Search engine**
 - Actual biological data is presented. Conclusions are made by the scientist.
 - Strong prioritization means there is always a manageable amount of data to review. No matter how much data is searched, there is always only one thing at the top of the list.
 - Easily handles multiple heterogeneous data types. Highly scalable. Could be considered a “massively orthogonal” approach.
 - Highly successful algorithms are available, e.g. Google’s PageRank.

- **Find a good predictive algorithm? Include its results in the search engine!**
Can we ‘Google®’ our data?
Yes!!!

The web is a **searchable** collection of connected web pages.

We can create a **searchable** web of compound target data.

Graph representation of the internet

MoA Central graph for the query “rapamycin”.
MoA Central Vision

MoA = Mechanism of Action

A single search engine for **ALL** data (experimental or *in silico*) relevant to compound target/MoA.
What target ID/MoA data does Novartis have?

Just a sampling...

HitHub
Compound activities (DMP)
Data collected from multiple internal and external sources.

CLE
Cell line encyclopedia (Onc)

PFVS
Protein Family Virtual Screening (GDC, EMV)

Bayes
Bayesian target prediction (DMP)

RGAP
Reporter Gene Assay Profiling (GNF)

LMF
Transcriptional signatures (DMP)

TIP
Target ID Proteomics (DMP)

HTSFP
HTS fingerprints (DMP)

CLiP
Cell Line Proferation (DMP)

ECFP
2D structural similarity (DMP)

- **in silico**
- **Databases**
- **Omics**

HIP-HOP
Yeast chemical genetic profiling (DMP)
MoA Central search strategy

What are the targets of compound X? (or similar compounds)

1. Query compound
2. Structurally similar compounds
3. Phenotypically similar compounds
4. Consensus targets

- Rapamycin (sirolimus)
- E.g. “Rapalogs” (only Rapamycin shown)

Other mTOR & PI3K pathway modulators

- mTOR
- FKBP1A
- RPTOR

Data types:

- ~200 million data points
- >15 data sources
- ~80,000 gene & compound sets

- 2D structural similarity
- More to come...

- Transcriptional profile
- Yeast chemical genetic profile
- Mammalian cell line proliferation profile
- High throughput screening profile
- Etc.

- Biochemical activity databases
- Chemical proteomics
- Yeast chemical genetics
- Mammalian chemical genetics
- In silico target prediction methods
- Etc.
Focal graphs: structured evidence

Nodes (circles) are compounds or genes; edges (lines) are relations

Edge examples (black arrows)
- Compounds are structurally similar
- Compounds have similar transcriptional profiles
- Compounds kill similar cell lines
- Gene product is inhibited by compound
- Gene is overexpressed in sensitive cell lines
- Etc.

Focal graphs highlight where the preponderance of evidence is pointing.
Focal graphs: prioritization & segmentation

Rapamycin (sirolimus); Labels sized by indegree or PageRank; Targets/Compounds colored by walktrap community finding algorithm

Visualization and graph metrics are from Gephi (gephi.org).
Focal graph analysis of Rapamycin (sirolimus)

Which graph analysis measures best point to target/MoA?

No labels

OutDegree

InDegree

Equal

Google PageRank

Eigenvector Centrality

MoA graph v2; visualization in Gephi (gephi.org)
MoA Central architecture

Search results can be pre-calculated and stored for fast visualization

- Single search
 - Parallelize steps within search
 - If not already calculated

- Batch searches
 - Parallelize searches in the cluster/cloud
MoA Central: a compound target search engine

MoA Central fetches molecular target data for small molecules. The query is automatically expanded to include compounds with a similar structure or biological profile.

Compound similarity analyses
- 2D Chemical similarity (ECFP)
- Cell line proliferation (CLIP)
- Transcriptional gene signatures (LMF)
- Reporter gene assay profiling (RGAP)
- Yeast chemical genetic profiling (HIP-HOP)
- HTS Fingerprints (HTSFP)

Compound target data
- IC50 (HitHub: Avalon, MAGMA, GVK...)
- *In silico* target prediction (Bayes)
- Yeast chemical genetics (HIP)
- Mammalian cell line sensitivity (CLIP-CLE)
- Target ID chemical proteomics (TIP)
MoA Central

Generate custom search results for compounds or lists of compounds

- Enter compound name/ID, select from suggestions
- Multiple compounds can be entered in succession to generate a single result with possible shared targets
- Enter a search name (optional)

Users receive an e-mail when the search has started, and another e-mail with a link to the results when it’s finished.
Graph metrics are calculated in R using the igraph package.
MoA Central: a compound target search engine

Gleevec (imatinib): supporting evidence for targets (direct)
MoA Central: a compound target search engine

Gleevec (imatinib): supporting evidence for targets (indirect)
MoA Central: a compound target search engine

Gleevec (imatinib): most similar compounds
MoA Central: a compound target search engine

Gleevec (imatinib): evidence supporting compound similarity
Integrated set analysis tells you if these targets/compounds:

- Are linked to a toxicity or adverse event
- Cause or reverse an in vivo phenotype
- Share a mechanism
- Share a protein domain
- Are members of the same complex
- Are members of the same signaling pathway

This information itself is collated from a large number of data sources.
Set enrichment analysis
76,689 unique gene and compound sets across multiple domains

- **Genes**
 - **In vivo**
 - MGI gene to phenotype (8,083 sets)
 - CTD gene to disease (4,908 sets)
 - Metabase gene to toxicity (by species, all species) (2,117 & 1,561 sets respectively)
 - **Pathways**
 - Broad canonical pathways (1,332 sets)
 - Magma siRNA screens (372 sets)
 - Magma “Best of Pathways” siRNA screens (66 sets)
 - **Gene ontology (from Broad MSigDB)**
 - Biological function (872 sets)
 - Cellular component (269 sets)
 - Molecular function (398 sets)
 - **Biophysical**
 - Interpro gene to protein domain/family (10,185 sets)
 - Metabase protein complexes (436 sets)
 - **Mixed**
 - Broad MSigDB complete collection (10,746 sets)

- **Compounds**
 - **In vivo**
 - Integrity compound to therapeutic area (8,289 sets)
 - GVK GoStar compound to toxicity (by species, all species) (11,263 & 8,115 sets respectively)
 - GVK GoStar compound to adverse event (1,928 sets)
 - **Mechanisms**
 - Integrity compound to mechanism (8,620 sets)

Coming soon:
Compounds linked to toxicities, pathologies and biomarkers in preclinical models.
MoA Central: a compound target search engine

Gene and compound panes are opportunities to link to additional info
MoA Central: Mechanism of Action/Toxicity Analysis

Investigating skin toxicity observed preclinically with Compound X

1. Search for compound

2. MoA Central identifies links to the primary target (target x) as well as to PI3Kinase, via the Cell Line Profiling platform (CLiP).

3. A search for ‘skin’ reveals 21 possible links between Compound X and skin phenotypes/toxicities.

Analysis done in collaboration with Rie Kikkawa & Daher IbrahimAibo, PCS Pathology
Target characterization via tool compound pharmacology

Analysis done in collaboration with Jeremy Jenkins, Yuan Wang, & Ben Cornett (DMP)
Data dissemination made *massively* efficient *should mean* better medicines.
Will there be a tipping point?
Speculations

- How much data is needed before we have a high confidence target ID/MoA hypothesis for 80% of our compound archive?

- Will phenotypic screening compound hit lists be immediately interpretable in terms of their likely target/MoA?

- Will we run virtual screens where we identify the compounds most likely to:
 - Hit a given target?
 - Cause or reverse a given phenotype?

- Can we apply focal graphs to other questions, e.g. “if I modulate this gene, what is most likely to happen?” Could this then be used for *in silico* target selection?
What a compelling compound target hypothesis might look like:

- A close structural analog (ECFP) binds to the target in a chemical proteomics experiment (TIP).
- 5 compounds which hit the same HTS screening assays (HTSFP) are known to be potent inhibitors of the target (HitHub).
- Based on its structure, it’s predicted to hit this target by two different in silico target prediction methods (Bayes, PFVS).
- Overexpression of this target in mammalian cell lines leads to compound resistance (CLiP-CLE).
- Reduced dosage of the yeast ortholog of the target causes sensitivity (HIP) to 2 compounds with closely related structures (ECFP).

Furthermore, from set analysis:

- Targets linked to this compound are known to cause a phenotype relatable to the phenotypic screening assay in which the compound was originally identified.
- Targets linked to this compound share a common domain, which further strengthens the direct target hypothesis.
- Compounds linked to the query compound cause a specific toxicity, giving an early warning of things to look out for.

Tipping point?

How much data do we need before we have a compelling target hypothesis for 80% of our compound archive?

- in silico
- Databases
- Omics
Prospective New Data Types

From anywhere and everywhere

1. *in silico* models...
2. Publications...
3. Collaborators...
4. Seminars...
5. Conferences...
6. Databases...
7. Updates to existing databases/analyses...

Data dissemination made *MASSIVELY* efficient
The Future of Drug Discovery

MoA Central

1. Data-driven

“There are known knowns, there are known unknowns, and there are unknown unknowns. Then there are things in databases.”*

2. Mechanism-based

“Nothing in Biology Makes Sense Except in the Light of [insert mechanism here]”**

*I made this up, but it was inspired by Donald Rumsfeld’s “known unknowns” statement (2002).

**Adapted from Theodosius Dobzhansky. The mechanism he was referring to was evolution. (1973)
For more information, please visit my Research Gate profile:

https://www.researchgate.net/profile/Douglas_Selinger
Thanks!

MoA Central Core Team
- Doug Selinger (PCS)
- Varun Shivashankar (NX)
- Azita Ghodssi (Program Office)
- Igor Mendelev (NX)
- Mustapha Larbaoui (PCS)
- Mike Steeves (NX)
- Melissa Wilbert (PCS)

The PCS informatics team

Key collaborators
- Steve Litster (NX)
- Jeremy Jenkins (DMP)

Target ID technology platforms
- Target ID chemical Proteomics – TIP (DMP)
- Cell line profiling - CLiP (DMP)
- Cell line encyclopedia - CLE (Onc)
- Reporter Gene Assay Profiling - RGAP (GNF)
- HIP-HOP yeast chemical genetics (DMP)
- Transcriptional signatures – LMF (DMP)
- Bayesian target prediction (DMP)
- Protein Family Virtual Screening – PFVS (GDC, EMV)
- HTS fingerprints – HTSFP (DMP)
- HitHub (DMP)

Philippe Marc
(PCS informatics, Global Head)

Page Bouchard
(PCS, Global Head)